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Abstract

This work proposes a theoretical framework for the investigation of chemical and mechanical properties of
nanostructures. The methodology is based on a two-step approach to compute the electronic density distribution in
and around a nanostructure, and then the displacement of its nuclei. The Electronic Problem embeds interpolation
and coupled cross-domain optimization techniques through a process called electronic reconstruction. In the second
stage of the solution, the Ionic Problem deals with repositioning the nuclei of the nanostructure given the electronic
density in the domain. It is shown that the new ionic configuration is the solution of a non-linear system obtained
based on a first order optimality condition when minimizing the total energy associated with the nanostructure.
The long-term goal of this work is a substantial increase in the dimension of the nanostructures that can be
simulated using approaches that include accurate DFT computation. The increase in nanostructure size results
from the key observation that during the solution of the Electronic Problem expensive DFT calculations typically
carried out with dedicated third party software such as NWChem or Gaussian03, are limited to a small number of
subdomains; the electronic density is then reconstructed elsewhere. For the Ionic Problem, computational gains
result from approximating the dislocation of the nuclei in terms of a reduced number of representative nuclei
following the quasicontinuum paradigm.

1 Introduction

The intent of this document is to provide the analytical framework for a longer-term project that focuses on the
investigation of chemical and mechanical properties of nanostructures.

Nanostructures have dimensions in the range of 1 ∼ 100 nm and typically contain 102 ∼ 108 atoms. Applying
the well-established Kohn-Sham DFT method [18] for nonperiodic structures of 60 atoms has led to simulations
that can take up to three months to complete. When long range interactions are ignored and pseudo-potentials
are used, ab-initio simulations have been carried out for nonmetallic structures with up to 1,500 atoms [25]. The
approach that enabled the increase in the number of atoms belongs to the family of so-called O(N) methods [10],
which scale as N with the dimension of the problem (in this case the number of electrons).

This work is concerned with fundamental electronic structure computation methods. Acknowledging the small-
dimension constraint placed on the problem by the existing Density Functional Theory (DFT)-based methods, the
goal of the proposed work is to use techniques that, by closing the spatial scale gap, render electronic structure
information at the nanoscale. This electronic structure information is then used to investigate the chemical and
mechanical properties of the material.

In the context of mechanical analysis of nanostructures, the methodology proposed follows in the steps of the
quasi-continuum work proposed in [26, 16, 7]. Specifically, this is an extension of the work in [26, 16], because
rather than considering a potential-based interatomic interaction that has a limited range of validity and is difficult
to generalize to inhomogeneous materials, the methodology proposed uses ab-initio methods to provide for the
particle interaction. At the same time it is a generalization of the method proposed in [7] because rather than
considering each mesh discretization element to be part of a periodic and uniformly deformed infinite crystal,
the proposed method treats in a generic optimization framework any structure (nonperiodic and inhomogeneous)
once the electronic density distribution is available.

Two goals are associated with this project; (1) development and software implementation of a methodology
that can substantially increase the dimension attribute of the electronic structure problem, and (2) support
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for investigation of general nanostructures (metallic and nonmetallic, nonperiodic structures, inhomogeneous
materials).

1.1 Paradigm of the proposed approach

The electronic density reconstruction described is done in reference to a regular lattice or domain of a regular
lattice. Significant computational savings are anticipated to stem from two assumptions: (1) the geometric
assumption, where the premise is that the lattice is only minimally deformed and the state variables are nearly
periodic in most of the domain (this latter requirement will be relaxed to allow for localized defects), and (2)
the electronic assumption, where the premise is that for a given ionic distribution, the electronic energy can be
expressed as

E(ρ, ρA) =

Z
θ1(ρ, ρA, r)dr +

ZZ
θ2(ρ, ρA, r; ρ, ρA, r′)drdr′ (1)

This representation is commonly used in conjunction with the so-called Orbital-Free DFT (OFDFT) method [29].
Here θ1,2 are the relevant energy density functions; ρ is the electronic density; and ρA is the nuclear density, which
may include delta functions. The first term typically includes the kinetic energy and an exchange-correlation term,
whereas the second integral includes all pairwise interactions. Details regarding the definition of these terms are
provided by several authors [20, 15, 17].

The electronic structure computation is then formulated as an optimization problem [14]: find the electronic
density ρ that solves the problem

min
ρ

E[ρ, ρA] (2a)

subject to the charge conservation constraint Z
ρ(r)dr = Ne (2b)

where Ne represents the number of electrons present. The solution to this problem depends parametrically on
the nuclear density ρA, ρ = ρ(ρA), a consequence of the Born-Oppenheimer assumption. Subsequently, the
computation of the ground state of the entire system as the solution of the optimization problem

min
ρA

E[ρ(ρA), ρA] (3)

provides the nuclei distribution. The latter problem governs the approach to the first question.
As indicated above, one of the two central assumptions is that almost everywhere in the nanostructure the

solution to the nuclei distribution problem results in only small deformations. In order to quantify the concept
of small deformation, the nanostructure is considered to occupy an initial reference configuration D0 ⊂ R3.
The structure undergoes a change of shape described by a deformation mapping Φ(r0, t) ∈ R3. This deformation
mapping gives the location r in the global Cartesian reference frame of each point r0 represented in the undeformed
material frame. As indicated, the mapping might depend on time t. The variable t does not necessarily represent
the time contemporary with the structure under consideration. In fact, in a quasi-state simulation framework,
this variable might be an iteration index of an optimization algorithm that solves Eq.(3) in the case ρA is made
of nuclear point charges.

The components of the deformation gradient are introduced as

FiJ =
∂Φi

∂r0
J

(4)

where upper-case indices refer to the material frame, and lower-case indices to the Cartesian global frame. Thus,
F = ∇0 Φ, where ∇0 represents the material gradient operator, and therefore the deformation of an infinitesimal
material neighborhood dr0 about a point r0 of D0 is expressed as

dri = FiJ dr0
J (5)

The concept of small distortion is equivalent to requiring that the spectral radius of F be sufficiently small; that
is,

||∇0 Φ||2 < K (6)

is expected to hold for almost everywhere in the domain B0, for a suitable chosen value of K.
As a consequence of the geometric assumption, computational savings are anticipated because for all the

domains that satisfy the condition of Eq.(6) a two-tier interpolation-based approach will reduce the dimension of
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the problem. First, the electronic structure will be reconstructed in some domains by interpolation using adjacent
regions in which a DFT-based approach has been used to accurately solve the electronic structure problem; we
call this procedure electronic density reconstruction. Second, the position of the nuclei will be expressed in terms
of the positions of a reduced set of so-called representative nuclei, repnuclei, in an approach similar to the one
proposed in [26]. The proposed approach solves only for the position of these repnuclei ; the position of the rest
of the nuclei is then obtained by interpolation.

The remainder of this document is organized as follows. Section 2 discusses the strategy for electronic density
reconstruction. The emphasis is placed on how interpolation is used to estimate the value of the electronic density
in an entire domain D based on information available in a limited set of interior subdomains. The section starts
with a simple DFT approach (Thomas-Fermi) that serves as a vehicle for introducing of an otherwise abstract
methodology. The entire section draws on the physics of the problem being addressed. In contrast, section 3
focuses on the numerical solution component of the methodology. This section casts the problem in a numerical
optimization framework and then presents the difficulties associated with the problem and the way they are
addressed. With the electronic structure problem solved, the proposed methodology uses the Born-Oppenheimer
assumption to investigate the mechanical properties of a nanostructure given a certain electronic distribution.
This analysis is discussed in section 4. Section 5 succinctly presents an outline of the computational flow at the
end of which the coupled electronic structure and nanostructure shape problems are solved together. A set of
open questions conclude this section. Following the Conclusions section, the Appendix presents a more formal
proof for a domain decomposition approach used within the Thomas-Fermi DFT framework.

2 Electronic Density Reconstruction

2.1 A simple example: a domain with a gap and Thomas-Fermi DFT

The notation introduced in section 1.1 as well as the proposed methodology is first applied when the Thomas-
Fermi functional is used to describe the dependency of the energy on electronic density [27, 8]. The Thomas-Fermi
functional has well-known severe accuracy limitations. It provides, however, a simple framework in which several
key points of the methodology proposed for electronic density reconstruction are more easily introduced.

2.1.1 The Thomas-Fermi functional

The Thomas-Fermi-based energy functional assumes the form

E [ρ, {RA}] = Ene [ρ, {RA}] + J [ρ] + K [ρ] + T [ρ] + Vnn ({RA}) (7)

where

Ene [ρ, {RA}] = −

MX
A=1

Z
ZA ρ(r)

‖RA − r‖
dr (8a)

J [ρ] =
1

2

Z Z
ρ(r) ρ(r′)

‖r − r′‖
dr dr′ (8b)

T [ρ] = CF

Z
ρ

5
3 (r) dr (8c)

K [ρ] = −Cx

Z
ρ

4
3 (r) dr (8d)

Vnn ({RA}) =

MX
A=1

MX
B=A+1

ZA ZB

‖RA − RB‖
(8e)

Here CF = 3
10

(3π2)2/3, and Cx = 3
4

�
3
π

�1/3
, and the following notation is used:

• Ene - energy corresponding to nucleus-electron interaction

• J - Coulomb energy

• K - exchange energy

• T - kinetic energy

• Vnn - inter-nuclear interaction energy

• ZA - atomic number associated with nucleus A
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Figure 1: Electronic density reconstruction.

• ri - global position of electron i

• RA - global position of nucleus of atom A

•
R

(·) without integration limits - an integral over the entire domain.

The expression of the energy functional of Eq.(7) justifies the notation used in Eq.(1): the kinetic, exchange,
and nuclear electronic energy are represented through the θ1 term; the electron-electron interaction is associated
with the term θ2.

In this simple example assume that there are three identical domains D1, D2, D3, as in Fig.1. The electronic
density in the respective domains is denoted by ρ1(r), ρ2(r), ρ3(r):

ρ(r) =

8<: ρ1(r)
ρ2(r)
ρ3(r)

r ∈ D1

r ∈ D2

r ∈ D3

The definition of the density outside the domain D1 ∪ D2 ∪ D3 is extended by assuming that its value is zero.
In the Thomas-Fermi case, the optimization problem of Eq.(2) depends parametrically on the positions of the

nuclei:
minρ E(ρ; {RA}) + λ

�R
ρdr − N

�
s.t.

R
ρdr − N = 0

(9)

The constrained optimization problem above is formulated for the case in which there is no deformation in
the underlying crystal structure of the material, whose nuclei are at positions {RA}, for A = 1 . . . M . In a direct
approach, the dimension of the problem is prohibitive most of the time; unless simplifying assumptions are taken
into account (such as periodic boundary conditions, local effects (truncation), pseudo-potentials, etc.), systems
that contain thousands of atoms cannot be typically simulated. For domains Di, i = 1, 2, 3, the energy is defined
as

Ei [ρi, λi; ρ̄i, {RA}] = CF

Z
Di

ρ
5
3
i (r) dr − Cx

Z
Di

ρ
4
3
i (r) dr +

Z
Di

Z
D−Di

ρi(r) ρ̄i(r
′)

‖r − r′‖
dr dr′ (10)

+
1

2

Z
Di

Z
Di

ρi(r) ρ̄i(r
′)

‖r − r′‖
dr dr′ −

MX
A=1

Z
Di

ZA ρi(r)

‖RA − r‖
dr + λi

Z
Di

ρi dr

We use the symbol ρ̄i to denote the electronic density outside the domain Di, i = 1, 2, 3. The optimality
conditions for the optimization problem (9) can now be represented in terms of subdomain problems on the
domains Di, i = 1, 2, 3.

∇ρiEi(ρi, λi; ρ̄i, {RA}) = 0, i = 1, 2, 3 (11a)

λ1 = λ2 = λ3 (11b)Z
ρdr − Ne = 0 (11c)
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2.1.2 Reconstruction through interpolation

Assuming that the solution is sufficiently close to, but not necessarily, periodic, for r ∈ D2 the density is recon-
structed by averaging, that is (see Fig.1)

ρ2(r) ≈
1

2
(ρ1(r − a(1, 0, 0)) + ρ3(r + a(1, 0, 0))) (12)

where a(1, 0, 0) is a translation vector that indicates that the structure is periodic in the (1, 0, 0) direction.
Likewise, a > 0 is a constant scaling factor associated with the underlying structure, much as it is the case with
a Bravais lattice but in this case applied for subdomain-type periodicity.
This approximation can be improved by using only domains away from the endpoints of the overall slab-like
domain. However, for simplicity, in this example the entire domains D1 and D3 are considered for reconstruction.
Based on Eqs.(11) and (12), this leads to the following coupled system of nonlinear equations

∇ρ1E1(ρ1, λ1; ρ3,
1

2
(ρ1(r − a(1, 0, 0)) + ρ3(r + a(1, 0, 0))) , {RA}) = 0 (13a)

∇ρ3E3(ρ3, λ3; ρ1,
1

2
(ρ1(r − a(1, 0, 0)) + ρ3(r + a(1, 0, 0))) , {RA}) = 0 (13b)

λ1 = λ3 (13c)Z
D1

ρ1dr +

Z
D3

ρ3dr =
2

3
Ne (13d)

which can be solved without referencing the second domain D2. Note that no assumption is made about the
charge neutrality in the domains; if an external nonsymmetric potential is present, the total charge will reflect
the non-symmetry.

The condition in Eq.(13a) leads to the following integral equation, which must hold for any r ∈ D1:

5

3
CF ρ

2
3
1 (r) −

4

3
Cxρ

1
3
1 (r) +

Z
D1

ρ1(r
′)K11(r

′, r)dr′ +

Z
D3

ρ3(r
′)K13(r

′, r)dr′ −
MX

A=1

ZA

||r − RA||
+ λ1 = 0 (14a)

where the kernels K11 and K13 are defined as

K11 =
1

||r − r′||
+

0.5

||r − (r′ + T)||
K13 =

1

||r − r′||
+

0.5

||r − (r′ − T)||
(14b)

where T = a(1, 0, 0). Similarly, writing the optimality condition of Eq.(13b) leads to the following integral
equation, which must hold for any r ∈ D3:

5

3
CF ρ

2
3
3 (r) −

4

3
Cxρ

1
3
3 (r) +

Z
D1

ρ1(r
′)K31(r

′, r)dr′ +

Z
D3

ρ3(r
′)K33(r

′, r)dr′ −
MX

A=1

ZA

||r − RA||
+ λ3 = 0 (15a)

where the kernels K31 and K33 for this problem satisfy the condition

K31 = K11 K33 = K31 (15b)

Equations 14a and 15a represent a set of nonlinear integral equations that are solved through standard tech-
niques [2]. These equations were derived under the assumption that there is no deformation of the domains.
However, similar equations can be derived from an interpolation approach on the underformed crystal, to which
the problem on the deformed crystal is reduced by the composition ρ ◦Φ(r0, t), where Φ(r0, t) is the deformation
mapping. In that case, Eq.(12) is replaced by

ρ2(r, t) = ρ2(Φ(r0, t)) ≈
1

2

�
ρ1(Φ(r0 − T, t)) + ρ3(Φ(r0 + T, t))

�
(16)

where the deformation Φ that depends on the position r0, of the point in the undeformed (material) frame, and
time is as defined in section 1.1. The optimality condition ∇ρ1E1 = 0 leads to the following integral equation:

5

3
CF ρ

2
3
1 −

4

3
Cxρ

1
3
1 +

Z
D1

ρ1(r
′)

||r − r′||
dr′ +

Z
D2

ρ2(r
′)

||r − r′||
dr′ +

Z
D3

ρ3(r
′)

||r − r′||
dr′ −

MX
A=1

ZA

||r − r′||
+ λ1 = 0 (17)

A change of integration variable is performed to take the integration back to the undeformed domains:
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Z
D1

ρ1(r
′)

||r − r′||
dr′ =

Z
D0

1

ρ1(Φ(r0′, t))

||Φ(r0, t) − Φ(r0′, t)||
|F(r0′, t)| dr0′ (18a)Z

D2

ρ2(r
′)

||r − r′||
dr′ =

Z
D0

2

ρ2(Φ(r0′, t))

||Φ(r0, t) − Φ(r0′, t)||
|F(r0′, t)| dr0′

=

Z
D0

2

0.5(ρ1(Φ(r0′ − T, t)) + ρ3(Φ(r0′ + T, t)))

||Φ(r0, t) − Φ(r0′, t)||
|F(r0′, t)| dr0′ (18b)Z

D3

ρ3(r
′)

||r − r′||
dr′ =

Z
D0

3

ρ3(Φ(r0′, t))

||Φ(r0, t) − Φ(r0′, t)||
|F(r0′, t)| dr0′ (18c)

Therefore, the optimality condition for any point r0 assumes the form of an integral equation:

5

3
CF ρ

2
3
1 (Φ(r0, t)) −

4

3
Cxρ

1
3
1 (Φ(r0, t)) +

Z
D0

1

ρ1(Φ(r0′, t))K11(r
0′, r0)dr0′ (19a)

+

Z
D0

3

ρ3(Φ(r0′, t))K13(r
0′, r0)dr0′ −

MX
A=1

ZA

||Φ(r0, t) − Φ(R0
A, t)||

+ λ1 = 0

where the kernels K11 and K13 are defined as

K11(r
0′, r0) =

|F(r0′, t)|

||Φ(r0, t) − Φ(r0′, t)||
+

0.5 |F(r0′ + T, t)|

||Φ(r0, t) − Φ(r0′ + T, t)||
(19b)

K13(r
0′, r0) =

|F(r0′, t)|

||Φ(r0, t) − Φ(r0′, t)||
+

0.5 |F(r0′ − T, t)|

||Φ(r0, t) − Φ(r0′ − T, t)||
(19c)

(19d)

Similarly, writing the optimality condition of Eq.(11) for domain D3 leads to the following integral equation
that must hold for any r0 in the undeformed domain D0

3:

5

3
CF ρ

2
3
3 (Φ(r0, t)) −

4

3
Cxρ

1
3
3 (Φ(r0, t)) +

Z
D0

1

ρ1(Φ(r0′, t))K31(r
0′, r0)dr0′ (20a)

+

Z
D0

3

ρ3(Φ(r0′, t))K33(r
0′, r0)dr0′ −

MX
A=1

ZA

||Φ(r0, t) − Φ(R0
A, t)||

+ λ3 = 0

where the kernels K31 and K33 satisfy

K31(r
0′, r0) = K11(r

0′, r0) K33(r
0′, r0) = K31(r

0′, r0) (20b)

Note that Eqs.(19) and (20) are similar to Eqs.(14) and (15). The equations corresponding to the undeformed
case are obtained by setting |F(r0′, t)| = 1, and Φ(r0, t) = r0 everywhere in D0

1 ∪ D0
2 ∪ D0

3. These two conditions
effectively indicate that none of these domains experiences any deformation.

In setting up and solving the above equations, an appropriate representation for Φ(r0′, t) is necessary. In this
work mesh-based representations are considered. This leads to the following representation:

Φ(r0′, t) =
X
A∈B

ϕ(r0′|R0
A)Φ(R0

A, t) (21)

Thus, the deformation needs to be represented only at the points R0
A, A ∈ B, and is then reconstructed by

interpolation at the other points of the space, by using the shape functions ϕ(·, ·). The points R0
A, A ∈ B may or

may not coincide with nuclear positions.
A difficulty with Eq.(19) is the fact that the equations are singular when r0 = R0

A, A = 1, 2, . . . , M , which raises
the question whether the equations are well posed. Considering the procedure used to obtain these equations, one
can only claim that they are valid everywhere except in small neighborhoods of the nuclear position; that is, not
for r0 = R0

A, A = 1, 2, . . . , M . In addition, asymptotic examination (as r0 → R0
A, A = 1, 2, . . . , M), of Eqs.(19)

reveals that they can be asymptotically satisfied, provided that the leading term is

ρ
�
Φ(r0, t)

�
≈

�
3ZA

5CF

� 3
2

||Φ(r0, t) − Φ(RA
0′)||−

3
2 (22a)
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Figure 2: Electronic density reconstruction.

Since the above expression is integrable in three dimensions, it does not pose a problem for evaluating the
total charge integral. In addition, this singularity is an artifact of the coordinate system used. Using spherical
coordinates to represent the density around Φ(R0

A
′
), the singularity is lifted by the determinant of the Jacobian

of the coordinate transformation. With respect to those coordinates, the density satisfies

ρ
�
Φ(r0, t)

�
∼ ||Φ(r0, t) − Φ(RA

0′)||
1
2 (22b)

and the singularity is thus removed.
Nevertheless, this type of behavior is not easily captured on a computational mesh. A controlled approximation

via smoothing of the potential will be introduced in section 2.3, and as a result the expression of the density will
be numerically well behaved.

2.2 Analytic foundation of electronic density reconstruction

In this subsection, the process of electronic density reconstruction is referred to as fluctuation reconstruction, in
reference to homogenization terminology [4]. The objective is to develop efficient tools that compute the solution
to the electronic structure problem up to higher-order terms O (F)2 + O (∇0 F). This is equivalent to carrying
out the first step of the classical homogenization technique [4].

For simplicity, assume that two identical rectangular domains of linear size a are separated by a vector
La (1, 0, 0), where L is an integer. These reference domains Dr

1 and Dr
L+1, have electronic densities ρ1 and

ρL+1, respectively, that might have been computed by using an elaborate DFT method. The goal is to recon-
struct the density in the domain between the two given rectangular domains (the shaded region in Fig.2). The
notation convention Tk = kT is used below.

The potential generated by the total charge in the system is

V (r) =

Z
ρ(r′) + ρA(r′)

r − r′
dr′.

In our computations it is important to consider separately the potential that is generated by electronic density
outside a given domain D, whose complement is D̄, that is,

V ext(r; D) =

Z
D̄

ρ(r′) + ρA(r′)

r − r′
dr′ +

Z
D

ρA(r′)

r − r′
dr′, r ∈ D. (23)

For solving the electronic problem, we may consider that the effect of the nuclei from the domain is also a part of
an “external” potential, which explains the last term in the previous expression.

Clearly,

V (r) = V ext(r; D)′ +

Z
D

ρ(r′)

r − r′
dr′.

One consequence of the geometric assumption (see subsection 1.1) is that the external potential and the
electronic density are nearly periodic, at least in the direction or in the region in which we do the reconstruction.
For that assumption to be reasonable, one may imagine either that the domain depicted in Fig.2 is embedded in
a crystal sufficiently large in the horizontal direction and periodic across, or that the end domains Dr

1 and Dr
L+1

are sufficiently far away from the boundary of the crystal. In addition, we assume that the “periodicity defect” is
slowly varying in space on the scale of the domains.

This assumption is typical in homogenization theory, and in this context an observable W (x) can be expressed
as W (x) = f(x

b
, x

a
). Here f(y, z) is a function that is periodic in z with a vector period T̂ = O(1) and that is well

behaved in y, that is, ∂f
∂y

= O(1). An example of such function is y sin(z). Here a is the characteristic length scale
of the fluctuations (the “microscale”, or a measure of the domain Dr

1 in our case, such as its diameter), whereas
b is the “macroscale” length scale (in our case, the entire crystal or nanoparticle) and a ≪ b.
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As a result of our representation of W (x), we have from the intermediate value theorem that, for any integer
k, the following holds:���W (x + k bTa) − W (x)

��� = �����f  x + k bTa

b
,
x + k bTa

a

!
− f

�x

b
,
x

a

������ = �����f  x + k bTa

b
,
x

a

!
− f

�x

b
,
x

a

������ = O

�
ka

b

�
By a similar argument, the following also holds for nearly periodic W (x).�

1 − k−1
L

�
W (x) + k−1

L
W
�
x + LabT�− W

�
x + (k − 1)abT� = O(

�
La

b

�2
), k = 1, 2, . . . L + 1

Therefore, the nearly periodic assumption for V ext(r; D) implies that the external potential has the following
two properties ��V ext(Φ

�
r
0 + Tk1−1, t

�
; Dk1) − V ext �Φ �r0 + Tk2−1, t

�
; Dk2

��� ≤

O

�
(k1 − k2)a

b

�
≤ O

�
La

b

�
, ∀r0 ∈ Dr

1 , 1 ≤ k1 < k2 < L + 1,

and�
1 −

k − 1

L

�
V ext(Φ

�
r
0, t
�
; D1) +

�
k − 1

L

�
V ext �Φ �r0 + TL, t

�
; Dr

L+1

�
− V ext �Φ �r0 + Tk−1, t

�
; Dk

�
= O

 �
La

b

�2
!

k = 1, 2, . . . L + 1, r
0 ∈ Dr

1

In the following, we assess the error of reconstructing the electronic density in the domains Dr
k, k = 2, . . . , L

by interpolation between its values in domains Dr
1 and Dr

L+1. The reconstruction rule is the following:

ρ
�
Φ
�
r
0 + Tk

�
, t
�
≈ bρ �Φ �r0 + Tk, t

��
=

�
1 −

k

L

�
ρ1

�
Φ
�
r
0, t
��

+
k

L
ρL+1

�
Φ
�
r
0 + TL, t

��
, k = 2, . . . L, r

0 ∈ Dr
1

(24)
where we have denoted

ρ1

�
Φ
�
r
0, t
��

= ρ
�
Φ
�
r
0, t
��

, ρL+1

�
Φ
�
r
0 + TL, t

��
= ρ

�
Φ
�
r
0 + TL, t

��
r
0 ∈ Dr

1

to emphasize the fact that the reconstructed density depends only on the density values.

Theorem 1 Assume that the external potential is nearly periodic. Then the error in the optimality conditions of
the electronic structure problem is

O

 �
La

b

�2
!

+ O
�
ρ1

�
Φ
�
r
0, t
��

− ρL+1

�
Φ
�
r
0 + TL, t

���2
Proof

We now assume that the optimality conditions can be expressed as

θ
�
ρk; V ext(Φ

�
r
0 + Tk−1, t

�
; Dk); r0 + Tk−1

�
= 0, r

0 ∈ Dr
1, k = 1, 2, . . . , L + 1,

where θ is an operator that is twice continuously differentiable in the range of approximation. For example, in
the case of the Thomas-Fermi approach, Eq.(14) results in the following approach for θ.

θ
�
ρk; V ext �Φ �r0 + Tk−1, t

�
; Dk

�
; r0 + Tk−1

�
=

5

3
CF ρ

2
3
k

�
Φ
�
r
0 + Tk−1, t

��
−

4

3
Cxρ

1
3
k

�
Φ
�
r
0 + Tk−1, t

��
+

Z
Dk

ρk(Φ(r0′ , t))

Φ(r0 + Tk−1, t) − Φ (r0′ , t)
|F(r0

′

, t)|dr0′ + V ext �Φ �r0 + Tk−1, t
�
; Dr

k

�
+ λ = 0

where r0 ∈ Dr
1 , k = 1, 2, . . . , L + 1. The second-order differentiability of θ holds as long as ρ is bounded from

below.
In our approach, the reconstructed density depends only on the the values of the density in Dr

1 and Dr
L+1, in

which we assume that the optimality conditions are exactly satisfied, that is,

θ
�
ρ1; V

ext �Φ �r0, t
�
; D1

�
; Φ
�
r
0, t
��

= 0, θ
�
ρL+1; V

ext �Φ �r0 + TL

�
; DL+1

�
; Φ
�
r
0 + TL

��
= 0, r

0 ∈ Dr
1 .
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Figure 3: Nanostructure at end of Preprocessing.

Using analysis tools in interpolation theory, as well as the assumption that the external potential is nearly
periodic, we obtain that

θ
�bρ �Φ �r0 + Tk, t

��
, V ext

�
Φ
�
r0 + Tk, t

�
; Dk+1

�
,
�
Φ
�
r0 + Tk, t

���
=

θ
��

1 − k
L

�
ρ1

�
Φ
�
r0, t

��
+ k

L
ρL+1

�
Φ
�
r0 + TL, t

��
,
�
1 − k

L

�
V ext

�
Φ
�
r0
�
; Dr

1

�
+ k

L
V ext

�
Φ
�
r0 + TL, t

�
; Dr

L+1

��
+

O
��

La
b

�2�
= O

��
La
b

�2�
+ O

�
ρ1

�
Φ
�
r0, t

��
− ρL+1

�
Φ
�
r0 + TL, t

��2�
, r0 ∈ Dr

1, k = 1, 2, . . . , L − 1,

which completes the proof.

The proposed interpolation-based approach has certain limitations and is not expected to always work well. In
particular, the reconstructed density might display discontinuities at the interface between neighboring domains,
which may be an issue with von Weizsacker-type kinetic energy corrections that are encountered in OF-DFT
approaches [29]. However, for the purpose of generating just the field and computed the force on nuclei in the
middle of the domain, the above approach is fairly accurate.

2.3 The strong form approach: the Thomas-Fermi example revisited

The strong form, or direct, approach refers to the case in which the electronic structure is computed, at least in
some subdomains, by solving the system of integral equations that the first-order optimality condition leads to.
In what follows this approach is exemplified for the Thomas-Fermi energy functional and applied to a domain
D = D1 ∪ . . .∪Du that contains the nanostructure. The optimality conditions of Eq.(11) are first formulated for
a set of p ≤ u representative domains Y1 through Yp. In what follows, Y = Y1∪ . . .∪Yp ⊂ D; more precisely, there
is an integer-to-integer mapping χ : {1, . . . , p} → {1, . . . , u} such that Yj = Dχ(j). The direct method computes
the electronic density in Y and uses reconstruction by interpolation to recover ρ in D − Y . For instance, in Fig.1
there are three domains D1, D2, and D3; Y1 = D1, and Y2 = D3. Likewise, in Fig.2 there are L + 1 domains, but
only two reconstruction domains: Y1 = D1, and Y2 = DL+1. Figure 3 also shows the partitioning of the domain
D in which the electronic structure computation is carried out, as well as the reconstruction domains Y1 through
Y5. The figure presents a two-dimensional case, but the discussion in this section covers both the two- and the
three-dimensional case. By convention, in what follows Greek subscripts are used to index quantities associated
with reconstruction domains.

At the core of the strong form approach stands the optimality condition for a generic domain Yα ∈ Y :

5

3
CF ρ

2
3
α (r) −

4

3
Cxρ

1
3
α (r) +

uX
i=1

Z
Di

ρi(r
′)

||r − r′||
dr′ −

MX
A=1

ZA

||r − RA||
+ λ = 0 (25)
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The first step is to express the density ρi on domain Di in terms of reference densities ρα ∈ Yα, α ∈ {1, . . . , p}. A
set of weights ϑ determined based on the type of interpolation considered (linear, quadratic, etc.) is used to this
end:

ρi(Φ(r0′, t)) =

pX
α=1

ϑα(i)ρα(Φ(r0′ + Tiα, t)) (26)

where the vector Tiα is the translation vector that based on the periodicity assumption takes the point r0′ in
domain Di to its image in the domain Yα.

Note that not all domains need to be included in the electronic density reconstruction. For example, if a
domain has a defect, the electronic density is severly distorted away from near periodicity assumption, and should
not be included in the reconstruction process in neibhboring domains. This can be formally accommodated by
our approach by setting vα(i) = δαχ(α), for such domains α where δ·· is the Kronecker symbol.

Taking into account the deformation of the structure,Z
Di

ρi(r
′)

||r − r′||
dr′ =

Z
D0

i

pP
α=1

ϑα(i)ρα(Φ(r0′ + Tiα, t))

||Φ(r0, t) − Φ(r0′, t)||
|F(r0′, t)| dr0′ =

pX
α=1

Z
Y 0

α

ρα(Φ(r0′, t))K̃iα(r0, r0′) dr0′

(27a)

K̃iα(r0, r0′) =
ϑα(i) |F(r0′ − Tiα, t)|

||Φ(r0, t) − Φ(r0′ − Tiα, t)||
(27b)

For any Yα, Eq.(25) is reformulated as

5

3
CF ρ

2
3
α (Φ(r0, t))−

4

3
Cxρ

1
3
α (Φ(r0, t))+

uX
i=1

264 pX
γ=1

Z
Y 0

γ

ργ(Φ(r0′, t)) K̃iγ(r0, r0′)dr0′

375− MX
A=1

ZA

||Φ(r0, t) − Φ(R0
A, t)||

+λ = 0

(28)
Defining for r0 ∈ Y 0

α

Kαγ(r0, r0′) =

uX
i=1

K̃iγ(r0, r0′) (29a)

then Eq.(28) yields

5

3
CF ρ

2
3
α (Φ(r0, t)) −

4

3
Cxρ

1
3
α (Φ(r0, t)) +

pX
γ=1

Z
Y 0

γ

Kαγ(r0, r0′)ργ(Φ(r0′, t))dr0′ −

MX
A=1

ZA

||Φ(r0, t) − Φ(R0
A, t)||

+ λ = 0

(29b)
which should hold for any r0 ∈ Yα. Finally, since ρ ≥ 0, a new function η is introduced such that

ρ(Φ(r0, t)) = ηs(r0, t) (30a)

where s ≥ 4 is an even integer. This new function must then satisfy in the subdomain Yα the following integral
equations:

5

3
CF η

2s
3

α −
4

3
Cxη

s
3
α +

pX
γ=1

Z
Y 0

γ

Kαγ(r0, r0′)ηs
γ(r0′, t)dr0′ −

MX
A=1

ZA

||Φ(r0, t) − Φ(R0
A, t)||

+ λ = 0 (30b)

The algorithm at this point calls for the solution of an nonlinear system of integral equations in ρα, α = 1, . . . , p.
In order to solve this system, the reference domains Yα are meshed by using hexahedrons. These meshes are
denoted in what follows by G1 through Gp, and they are associated with Y1 through Yp, respectively.

The direct numerical solution of the nonlinear system of integral equations becomes intractable in Cartesian
coordinates because of the singularity when the grid points in a mesh Gα approach a nuclei of location RA

(see Eq.(30b)). When approached in spherical coordinates in a three-dimensional representation this apparent
singularity is in fact a nonissue (see the discussion related to Eq.(22)). Below, a potential-smoothing step is
introduced to address the situation when r0 → R0

A. Compared to the original term ||Φ(r0, t) − Φ(R0
A, t)||−1, the

δ-smoothing function

Sδ(r
0,R0

A, t) =
1 − e−

||Φ(r0,t)−Φ(R0
A

,t)||

δ

||Φ(r0, t) − Φ(R0
A, t)||

(31)
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behaves similarly for large values of ||Φ(r0, t) − Φ(R0
A, t)|| and δ small but positive, but it converges to 1

δ
rather

than going to infinity when r0 → R0
A. Thus, the smoothing process applied to Eq.(30b) leads to

5

3
CF η

2s
3

α −
4

3
Cxη

s
3
α +

pX
γ=1

Z
Y 0

γ

Kαγ(r0, r0′)ηs
γ(r0′, t)dr0′ −

MX
A=1

ZA Sδ(r
0,R0

A, t) + λ = 0 (32)

The following notation is used in what follows:

ηβj – the value of η at the node j of grid Gβ

τ – a generic grid discretization cell of volume ||τ ||

V(τ) – the set of vertices associated with cell τ (four for a tetrahedron, eight for an hexahedron, etc.)

|Gα| – the number of grid points in Gα

Y 0
γ – undeformed reconstruction domain meshed with Gγ ; Yγ = ∪τ∈Gγ τ

After discretization, the integral equation above yields at an arbitrary grid node i ∈ Gα of location r0
i ∈ Yα,

5

3
CF η

2s
3

αi −
4

3
Cxη

s
3
αi +

pX
γ=1

24X
τ∈Gγ

Z
τ

Kαγ(r0
i , r

0′) ηs
γ(r0′, t)dr0′

35−
MX

A=1

ZA Sδ(r
0
i ,R

0
A, t) + λ = 0 (33)

The integral on τ is performed by q-point Gaussian numerical quadrature with weights wl:Z
τ

Kαγ(r0
i , r

0′) ηs
γ(r0′, t)dr0′ ≈ ||τ ||

qX
l=1

wl Kαγ(r0
i , r

0
l
′
) ηs

γ(r0
l
′
, t)

Figure 3 shows in the two-dimensional case a mesh cell and the quadrature points. As indicated in this figure, r0
i

describes the position of the grid nodes; the interior points (quadrature points) are located at r0
l
′
. The abscissas

r0
l
′
of the quadrature points are different from the mesh (grid) points, and the value of the unknown function η

at these abscissas is obtained by interpolation. Interpolation at point r0
l
′
∈ τ , using a set of shape functions ϕd

associated with the nodes d ∈ V(τ), yields

ηs
γ(r0

l
′
, t) ≈

X
d∈V(τ)

ηs
γd ϕd(r

0
l
′
, t) =

X
d∈V(τ)

ηs
γd ϕl

d

where ϕl
d are constants that can be precomputed. If one defines for r0 ∈ Yα and r0

l
′
∈ Yγ

kαγd(r0) =

qX
l=1

wl ϕl
d Kαγ(r0, r0

l
′
) , (34a)

the discretized form of the integral equation expressed at grid node i ∈ Gα of location r0
i ∈ Yα becomes

5

3
CF η

2s
3

αi −
4

3
Cxη

s
3
αi +

pX
γ=1

24X
τ∈Gγ

||τ ||
X
d∈V

kαγd(r0
i ) ηs

γd

35−
MX

A=1

ZA Sδ(r
0
i ,R

0
A, t) + λ = 0 (34b)

Denoting the left side of Eq.(34b) by Pαi(η), where η = (η11, η12, . . . , ηp1, ηp2, . . .)
T , the nonlinear system of

equations that should be solved becomes
Pαi(η) = 0 (35)

for α ∈ {1, 2, . . . , p}, i = 1, . . . , |Gα|.

One additional equation is added to the set of
Pp

α=1 |Gα| equations above, and it follows from the charge
constraint of Eq.(2b). The central idea is again to use the electronic density in the reference domains Yα to
express the electronic density in the whole domain D. Skipping the intermediary steps, this yieldsZ

D

ρ(r)dr =

pX
α=1

Z
Y 0

α

ηs
α(r0, t)K̂α(r0, t)dr0 (36a)

K̂α(r0, t) =
uX

i=1

ϑα(i) |F(r0 − Tiα, t)| (36b)
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Using for the evaluation of the integral on a cell of the undeformed grid Y 0
α the same quadrature rule and

interpolation method to evaluate the function at the quadrature points, the charge constraint equation eventually
assumes the for

pX
α=1

24X
τ∈Y 0

α

X
d∈V(τ)

ηs
αdk̂αd

35− Ne = 0 (37a)

k̂αd =

qX
l=1

wl ϕl
d K̂α(r0

l , t) (37b)

If a Newton-type method is considered for the solution of the nonlinear system of Eqs.(35) and (37a), the
partials are computed as

∂Pαi

∂ηαi
=

10s

9
CF η

2s−3
3

αi −
4s

9
Cxη

s−3
3

αi +
X

τ∈Y 0
α

||τ || δα
τi kααi(r

0
i ) ηs−1

αi (38a)

where δα
τi = 1 if for τ ∈ Gα, i ∈ V(τ), and δα

τi = 0 otherwise. When i 6= j or α 6= β,

∂Pαi

∂ηβj
=
X

τ∈Y 0
β

||τ || δβ
τj kαβj(r

0
i ) ηs−1

βj (38b)

Likewise,

∂P00

∂ηβj
=

pX
α=1

X
τ∈Y 0

α

s ηs−1
αd δα

τd k̂αd (38c)

where, by convention, P00(η) is a notation for the left side of Eq.(37a).

3 DFT with density reconstruction

By reference to equation (29a), we define

K̂αα(r0, r0′) =
uX

i=1, i6=χ(α)

K̃iα(r0, r0′), r
0 ∈ Y 0

α . (39)

It then follows that the external potential, as defined in (23), can be computed as

V ext(r0, ρ1, ρ2, . . . , ρp, α) =

Z
Y 0

α

K̂αα(r0, r0′)ρα(Φ(r0′, t))dr0′ +

pX
γ=1,γ 6=α

Z
Y 0

γ

Kαγ(r0, r0′)ργ(Φ(r0′, t))dr0′(40)

−
MX

A=1

ZA Sδ(r
0,R0

A, t), α = 1, 2, . . . , p, r0 ∈ Y 0
α .

Define now the following quantity

FTF (ρα, α) =
5

3
CF η

2s
3

α −
4

3
Cxη

s
3
α +

Z
Y 0

γ

K̃χ(α)α(r0, r0′)ργ(Φ(r0′, t))dr0′. (41)

Then the optimality condition (29b) can be written as

FTF (ρα, α) + V ext(r0, ρ1, ρ2, . . . , ρp, α) + λ = 0, α = 1, 2, . . . , p, r
0 ∈ Y 0

α .

The total charge density can also be computed based on (26)Z
ρ(r)dr =

uX
i=1

pX
α=1

ϑα(i)

Z
Y 0

α

ρα(Φ(r0′ + Tiα, t))
���F �r0′ + Tiα, t

���� dr0′

With these notations, we note that our density reconstruction methodology applies irrespective of the particular
DFT used. In that case, the only thing that changes is FKS . Therefore, the general electronic density problem
with interpolation-based reconstruction becomes
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F(ρα, α) + V ext(r0, ρ1, ρ2, . . . , ρp, α) + λ = 0, α = 1, 2, . . . , p, r
0 ∈ Y 0

α . (42a)
uX

i=1

pX
α=1

ϑα(i)

Z
Y 0

α

ρα(Φ(r0′ + Tiα, t))
���F �r0′ + Tiα, t

���� dr0′ = N. (42b)

An useful fact is that F(ρα, α) is the gradient of the objective function of the electronic structure problem
on domain Dα, α = 1, 2, . . . , p. We can therefore use, for a given DFT approach, any software that returns the
gradient with respect to ρ of the energy functional on domain Dα, coupled with a quasi-Newton approach to solve
(42).

3.1 Nonlinear equations vs. optimization approaches

The above problem is a nonlinear equation, that originates in an optimization problem. It can be immediately
proven that, in aggregate, it does not represent the first-order conditions of an optimization problem. That issue
is a bit unsettling, since solving optimization problems is typically a more robust process than solving equivalent
nonlinear equations, because any local minimum of the optimization problem satisfies the nonlinear equation of
its optimality conditions. When only a nonlinear system is available, a local minimum of the residual is not
necessarily a solution of the nonlinear system.

It is therefore important to assess whether there exists an optimization problem that is equivalent, at least up
to leading order of the homogenization error (La/b) with the nonlinear system.

In an abstract formulation, we have the following problem.

min
x1,x2

f(x1, x2)

Here we assume that the variables x1 correspond to the representative degrees of freedom whereas x2 correspond
to the rest of the degrees of freedom. In the electronic problem with density reconstruction, the representative
degrees of freedom are the ones used to parametrize the electronic density in the representative domains Dα,
α = 1, 2, . . . , p. In the quasi continuum method , the representative degrees of freedom are the positions of the
repatoms [26]. The latter method is based on the observation that one expects at the solution to have x2 = T (x1)
where T (x1) is the piecewise linear interpolation mapping with nodes at the repatoms. In the electronic density
problem, the mapping T (·) is the interpolation-based operator from (26).

Based on this observation, one can formulate the nonlinear equation

∇x1 f(x1, x2), x2 = T (x1)

which will provide the same solution as the original problem. However, the problem is an equilibrium problem
with equilibrium constraints rather than a minimization problem.

However, it immediately results using the chain rule that the optimization problem

min
x1

f(x1, T (x1)),

has the same solution as the previous two, provided that the reduced Hessian is positive definite, which should
be true if the original Hessian was positive definite, and the interpolation mapping is full rank. This observation
presents the advantage that one solves an optimization problem as opposed to a system of nonlinear equations,
and one has a better global convergence safeguards for the situation, which should help for the case when there
are many local minima to avoid the points that do not have the correct inertia of the Hessian.

In our case the first approach is the “optimize-and-interpolate” approach that we described in Section (2),
whereas the second approach is the “interpolate-and-optimize” approach that we describe in the Subsection 3.2
bellow . The following result settles in the positive the question of whether the two approaches are equivalent in
the limit of the ansatz x2 = T (x1). The proof technique is similar to the one we used for proving the approximation
order of the interpolation approach, and is ommited.

Theorem 2 Assume that the solution x∗ = (x∗
1, x

∗
2)of the original optimization problem satisfies‖x∗

2 − T (x∗
1)‖ ≪

1, therefore the multiscale ansatz is not perfect, it is merely very good. Then the solution x̃1of the nonlinear
equation and x̂1of the reduced optimization problem satisfy

‖x∗
1 − x̃1‖ = O(‖x∗

2 − T (x∗
1)‖

2
) ‖x∗

1 − x̂1‖ = O(‖x∗
2 − T (x∗

1)‖
2
)
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3.2 An optimization approach for the electronic structure problem

In this section we discuss the approach in which we use the interpolation ansatz (26) to create a reduced energy
functional, that depends only on the densities in the representative domains, which we then minimize.

The key terms are the ones that emerge from the electrostatic potential. We present a succint derivation of
the respective equations.

Define

K̃αγ(r0, r0′) =
uX

i=1

uX
j=1

vα(i)vγ(j)

��F (r0 + Tχ(α),i, t)
�� ���F (r0′ + Tχ(γ),j , t)

���
||Φ(r0 + Tχ(α),i, t) − Φ(r0′ + Tχ(γ),j , t)||

, α, γ = 1, 2, . . . , p, r
0 ∈ Y 0

α r
0′ ∈ Y 0

γ ,

L̃α(r0) =

MX
A=1

uX
i=1

vα(i)

��F (r0 + Tχ(α),i, t)
��

||Φ(r0 + Tχ(α),i, t) − Φ(RA, t)||
, α = 1, 2, . . . , p, r0 ∈ Y 0

α ,

M̃α(r0) =
uX

i=1

vα(i)
��F (r0 + Tχ(α),i, t)

�� α = 1, 2, . . . , p r
0 ∈ Y 0

α .

Using the interpolation ansatz, we can express several of the terms in (7) as a function of the densities in the
representative domains.

J(ρ) =
1

2

pX
α=1

pX
γ=1

Z
Y 0

α

Z
Y 0

γ

K̃αγ(r0, r0′)ρα(Φ(r0, t))ργ(Φ(r0′ , t))dr0dr0′

Ene(ρ) = −

pX
α=1

Z
Y 0

α

L̃α(r0)ρα(Φ(r0, t))dr0,Z
ρdr =

pX
α=1

Z
Y 0

α

M̃α(r0)ρα(Φ(r0, t))dr0.

The difficult part has to do with the kinetic energy and exchange terms T [ρ], K[ρ] whose dependence on the
density is not linear and, outside the Thomas-Fermi theory, not even simple to state. Assume that the latter
terms are described by a univariate density θ1(ρ, r), as described in the first term of (1), and as is indeed the case
for the Thomas-Fermi representation, with rhe rule

θ1(ρ, r) = CF ρ
5
3 − Cxρ

4
3 .

Then, by an argument similar to the one in Theorem 1, we obtain that the following approximation is accurate,
up to terms O((La

b
)2).

T [ρ] + K[ρ] ≈

pX
α=1

Z
Y 0

α

M̃α(r0)θ1(ρα, Φ(r0, t))dr0.

With these approximations and definitions and referring back to (7) we can then define the following electronic
structure computation problem

min EIO(ρ), subject to

Z
ρ = N, (43)

where we use the superscript “IO” to denote the “interpolate-and-optimize” approach.
The following are the optimality conditions of the optimality conditions.

0 = M̃α(r0)∇ρθ1(ρα, Φ(r0, t)) − L̃α(r0) +

pX
γ=1

Z
Y 0

γ

K̃αγ(r0, r0′)ργ(Φ(r0′ , t))dr0′ + λM̃α(r0)

N =

pX
γ=1

Z
Y 0

γ

M̃α(r0).

It is clear that the optimality conditions of the “interpolate-and-optimize” approach are more computationally
intensive to set up. Nonetheless, they open the avenue for using special techniques (such as projected gradient)
that are available and stable only for optimization formulation. We plan to compare the relative benefits of the
“interpolate-and-optimize” approach versus the “optimize-and-interpolate approach” in the near future.
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4 Nanostructure Shape Investigation

The optimization of the geometry of a nanostructure, to find the most stable shape, reduces to solving an opti-
mization problem (called hereafter the Ionic Problem) that minimizes the total energy given an electronic ground
state configuration of energy Ee as a function of the position of the nuclei. More precisely, the equilibrium
configuration of a nanostructure is provided by that distribution of the nuclei that minimizes the energy

Etot = Ee + Enn , (44)

where Enn is the nucleus-nucleus interaction energy.
The assumption is that the kinetic energy of the nuclei is zero and, central to this development, that Ee

is the electronic ground-state energy for the considered nuclear distribution. Following the Born-Oppenheimer
assumption, the electronic energy depends parametrically on the positions of the nuclei, through the dependence
of the electronic density on the nuclei positions. Thus, in a general from (that has the Thomas-Fermi of Eq.(7)
as a subcase):

Ee = T [ρ(r)] + EHar[ρ(r)] + Exc[ρ(r)] +

Z
ρ(r) Vext(r; {RA}) dr , (45)

where T [ρ(r)] is the kinetic energy functional, EHar[ρ(r)] is the electron-electron Coulomb repulsion energy,
Exc[ρ(r)] is the exchange and correlation energy, and Vext(r; {RA}) is the ionic potential, which parametrically
depends on the distribution of the nuclei {RA}. The explicit dependence of T [ρ(r)] and Exc[ρ(r)] on the density
ρ(r) is typically not available, and consequently it is approximated in some fashion [22, 29, 23, 13], an issue beyond
the scope of this document. According to the Hohenberg-Kohn theorem [14], the electronic density is such that
it minimizes Ee subject to the charge conservation constraint of Eq.(2b).

Theorem 3 Consider the optimization problem

min
{RA}

Etot = Ee + Enn (46a)

subject to the constraint that for a nuclear configuration {RA} the energy Ee is the electronic ground-state energy,
and the electronic density ρ̂ that realizes this electronic ground energy additionally satisfies the charge constraint
equation of Eq.(2b). Under these assumptions, the first order optimality conditions for the optimization problem
of Eq.(46a) lead to

FK =
∂Eext

∂RK
+

∂Enn

∂RK
= 0 , (46b)

where FK is interpreted as the force acting on nucleus K, and by definition

Eext(r; {RA}) = −
MX

A=1

Z
ρ̂(r) Vext (r; {RA}) dr = −

MX
A=1

Z
ZAρ̂(r)

|r − RA|
dr (46c)

Enn =
1

2

MX
A=1

MX
B=A+1

ZAZB

RAB
. (46d)

Proof

The proof relies on the calculus of variations. Since ρ̂(r) is determined to minimize the electronic energy, there
is a parametric dependency of this value on the ionic position: ρ̂(r) = ρ(r; {RA}). After application of the chain
rule, the optimality conditions for Etot will read

δEe

δρ

∂ρ

∂RK
+

∂Ee

∂RK
+

∂Enn

∂RK
= 0 (47)

where RK is the position of an arbitrary nucleus K.
The optimality conditions for minimizing the electronic energy as a functional of the electronic density lead to

δEe

δρ
+ λ

δg

δρ
= 0 , (48)

where λ is the Lagrange multiplier associated with the constraint

g[ρ] = 0 (49)

that the electronic density must satisfy. For the problem at hand the charge conservation equation results in
g[ρ] =

R
ρ(r) dr − Ne. Based on Eq.(49), the variation of ρ(r) with respect to Rk must satisfy

δg

δρ

∂ρ

∂RK
= 0 .
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Multiplying Eq.(48) from the right by ∂ρ
∂RK

leads to δEe

δρ
∂ρ

∂RK
= 0, which, substituted back into (47) yields the

optimality condition stated in Eq.(46b) and thus completes the proof.

Therefore, for each nucleus K in the system, Eq.(46b) leads to the conditionZ
ρ̂(r)

r − RK

||r − RK ||
3
2

dr +

MX
A=1,A 6=K

ZA
RA − RK

||RA − RK ||
3
2

= 0 . (50)

Remarks:

1. The value of the above theorem is that it allows us to solve the nuclear equilibrium problem by using only
the solution of the electronic density problem, and not the values and the derivatives of the kinetic and
exchange energy functionals. Therefore, we can use even an entirely nontransparent encapsulation of the
electronic structure problem which allows our approach to work well with legacy codes that do not provide
all the needed derivatives.

2. The key observation is that once the electronic density is available, the equilibrium conditions of Eq.(50)
can be imposed right away. Wether the electronic structure computation is done with KS-DFT or OF-DFT
is irrelevant; moreover, there is no need to know the explicit dependence of the energy Ee on the electronic
density ρ(r).

3. As suggested in [19], the one-atom conditions of Eq.(46b) can be replaced by cluster conditions, an alternative
that will be explored in the future.

4. Because of the presence of the electronic density ρ(r) that displays pronounced cusps in the vicinity of nuclei,
the integral in Eq.(50) must be evaluated by using special techniques [3, 28]. This computational aspect is
central to the overall algorithm and will be detailed in a separate document.

When a local quasicontinuum approach is used, the condition of Eq.(50) is imposed only for repnuclei ; that is,
only for K ∈ B (see Eq.(21)). The position of the rest of the atoms in the system is then expressed in terms of the
position of the repnuclei. The repnuclei become the nodes of an atomic mesh, and interpolation is used to recover
the position of the remaining nuclei. For instance, if the atomic mesh is denoted by M, τ is an arbitrary cell in
this mesh, V(τ) represents the set of the nodes associated with cell τ , and ϕL is the shape function associated
with node L, then the condition of Eq.(50) is approximated asZ

ρ̂(r)
r − RK

||r − RK ||
3
2

dr +
X

τ∈M

X
A∈τ

ZA

P
L∈V(τ)

RLϕL(RA) − RK

||
P

L∈V(τ)

RLϕL(RA) − RK ||
3
2

= 0 . (51)

This effectively reduces the dimension of the problem from 3 M (the (x, y, z) coordinates of the nuclei), to
3 Mrep, where Mrep is the number of nodes in the atomic mesh (the number of repnuclei). The sum in Eq.(51)
is most likely not going to be the simulation bottleneck (solving the electronic problem for ρ̂ is significantly more
demanding), but fast-multipole methods [1, 11, 24] can be considered to speed the summation.

Denoting by Pi, i = 1, . . . , Mrep, the position of the representative nucleus ni, the set of nonlinear equations
of Eq.(51) can be grouped into a nonlinear system that is solved for the relaxed configuration of the structure.

f1(P1,P2, . . .PMrep) = 0

f2(P1,P2, . . .PMrep) = 0

· · ·
fMrep(P1,P2, . . .PMrep) = 0

(52)

Finding the solution of this system is done by a Newton-like method. Evaluating the Jacobian information is
straightforward but not detailed here.

Finally, note that within Eq.(51) a connection is made back to Eq.(21); the position of an arbitrary nucleus
A in cell τ is computed based on interpolation using the nodes V(τ), one of many alternatives available (one
could consider repnuclei from neighboring cells for instance). Effectively, this provides in Eq.(21) an expression
for Φ(·, t) that only depends on A ∈ V(τ) rather than A ∈ B.
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Figure 4: Computational flow.

5 Proposed Computational Setup

Given a nanostructure of known atomic composition (not necessarily mono-atomic or single-crystal), the goal is
to determine the electron density distribution as well as its final configuration; that is, the mapping Φ. Because of
the assumption that the kinetic energy of the nuclei is zero, the problem corresponds to a zero Kelvin temperature
scenario. A methodology that handles the non-zero temperature case is not addressed here; most likely, it would
follow an approach similar to that of Car-Parrinello [5], or Payne et al. [21].

As indicated in Fig.4, the proposed solution has three principal modules: the Preprocessing stage, the Electronic
Problem, and the Ionic Problem. Preprocessing is carried out once at the beginning of the simulation. A suitable
chosen domain D is selected to include the nanostructure investigated. The partitioning of D into u subdomains
Di, i = 1, . . . , u, is done to mirror the underlying periodicity of the structure. A set of subdomains Dχ(1) through
Dχ(p) is determined to constitute the reconstruction domains, and as in section 2.3 they are denoted by Y1 through
Yp. In these p subdomains explicit electronic structure computation will be carried out accurately. A set of values
of the electronic density is required at the nodes of the discretization mesh; the initial guess for the electronic
density could be a uniform distribution throughout the nanostructure or, when practical, could be obtained based
on a periodic boundary conditions assumption by computing it in a domain Dj and then cloning for the remaining
domains Dk. Preprocessing concludes with the initialization of the deformation map Φ to zero.

The Electronic Problem can be solved externally or internally. When it is solved externally, a specialized
code such as NWChem [12] or Gaussian03 [9] is employed to compute the electronic density in the reconstruction
subdomains Yα, α ∈ {1, . . . , p}. When the electronic problem is solved internally (only for qualitative studies,
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using for instance the Thomas-Fermi DFT; see section 2.3), the electronic structure computation requires a mesh
grid on which the integrals associated with the formulation are discretized. The algorithm uses three-dimensional
interpolation to provide for the density in Dj , where j ∈ {1, . . . , u}−{χ(1), . . . , χ(p)} (the analytical basis of this
process is detailed in section 2).

Independent of the type of solver invoked (external or internal), with a suitable norm the new electronic density
ρnew is compared to ρinit, and the computation restarts the Electronic Problem after setting ρinit = ρnew, unless
the corrected and initial values of the electronic density are close. This iterative process constitutes the first inner
loop of the algorithm. Its analytical foundation is discussed in sections 2 and 3.

The Ionic Problem uses the newly computed electronic density to reposition the nuclei and thus alter the
shape of the structure. The nonlinear system of Eq.(52) provides the position of the repnuclei, the other nuclei
being positioned based on the quasi-continuum paradigm discussed in section 4. The nonlinear system in Eq.(52)
is used by an iterative method, which leads to the second computation inner loop. This second inner loop has
four steps:

1. Evaluate the integral of Eq.(51); when necessary, evaluate its partial with respect to Pi

2. Evaluate the double sum of Eq.(51), which is based on a partitioning of the structure; when necessary,
evaluate its partial with respect to the position of the representative atoms

3. Carry out a quasi-Newton step to update the positions Pi of the Mrep representative nuclei.

4. Go back to 1 if not converged

The precision in determining the position of the nuclei is directly influenced by the accuracy of the electronic
density ρ(r). Accurately solving the Electronic Problem is computationally intensive, and thus an important issue
not addressed by this work is the sensitivity of the solution of the non-linear system of Eq.(52) with respect to
ρ(r). It remains to be determined weather a crude approximation of the electronic density suffices for solving the
Ionic Problem at a satisfactory level of accuracy.

After determining the position of the nuclei, the algorithm computes the new deformation mapping Φ according
to Eq.(21). If the overall change in the position of repnuclei at the end of the Ionic Problem is smaller than a
threshold value, the computation stops; otherwise the new distribution of the nuclei is the input to a new Electronic
Problem (second stage of the algorithm).

In summary, the algorithm passes through the Preprocessing stage once. It then solves the Electronic Problem
(the first inner loop) and proceeds to the Ionic Problem (the second inner loop). The outer loop (Electronic
Problem, followed by Ionic Problem) stops when there is no significant change in the position of the repnuclei.

6 Conclusions

This paper proposes a theoretical framework for nanostructure optimization. The geometric (space periodicity),
and the electronic (energy functional form) assumptions introduced in section 1.1 are at the center of a method-
ology that uses interpolation and coupled cross-domain optimization techniques in an effort to increase the size
of the problems that rely on a DFT-based solution component. For the electron density computation (the Elec-
tronic Problem) formal error bounds are provided for the interpolation and cross-domain reconstruction techniques
used. The electronic density reconstruction process can be done internally following an approach similar to the
one introduced in section 2.3 for the Thomas-Fermi DFT; alternatively, it can be carried out using dedicated
third party software such as NWChem or Gaussian03. In either case, the density is reconstructed by solving a
cross-domain coupled nonlinear problem formulated in section 3 as an optimization problem. The last step of
the proposed methodology calls for solving the Ionic Problem; that is, repositioning the nuclei of the structure
given the electronic density in the domain. It was shown in section 4 that the new ionic configuration is the
solution of a non-linear system obtained based on a first order optimality condition. The Jacobian information
for this system is readily available, and its solution does not require the explicit dependency of the kinetic and
exchange-correlation energies on the electronic density.

Based on the proposed methodology, a set of simple test cases are currently under investigation: (a) the test
case presented in Fig.1 for a mono-atomic Al structure bounded by a surface; (b) the electronic structure study
of an inner defect in a silicon crystal.
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Appendix

A The Domain Decomposition Approach for Thomas-Fermi DFT

Within the Born-Oppenheimer framework, the electronic density minimizes the energy functional E [ρ, {RA}] of
Eq.(7), subject to the charge conservation constraint of Eq.(2b). If ρ(r) is optimal, δE [ρ; {RA}] = 0 for any
change δρ(r) that is consistent with the charge constraint, in other words, that satisfiesZ

δρdr = 0 . (53a)

If one suitably defines

F [ρ(r); {RA}] =
5

3
CF ρ

2
3 (r) −

4

3
Cxρ

1
3 (r) +

Z
D

ρ(r′)

||r − r′||
dr′ −

MX
A=1

ZA

||r − RA||
, (53b)

the condition

δE [ρ, {RA}] =

Z
D

F [ρ(r); {RA}] δρ(r)dr = 0 (53c)

should hold for any variation δρ(r) that satisfies the condition of Eq.(53a). Consequently, F [ρ(r); {RA}] is
constant, and by convention this constant is denoted by λ. Thus, an optimal ρ(r) must necessarily satisfy

F [ρ(r); {RA}] + λ = 0 (54a)Z
D

ρ(r)dr − Ne = 0 (54b)

Next, consider that the domain D is partitioned in two disjoint subdomains D1∪D2 = D, in order to prove that
by appropriately defining the external potential in each of these two subdomains, and then solving the associated
electronic problem in each domain, will produce the same solution ρ(r) that the problem in Eq.(54) leads to. For
this to happen, the following two conditions must be satisfied:

1. When solving the electronic structure problem in D1, the density ρ2 in the domain D2 is considered fixed;
in other words, the energy functional E1 associated with D1 depends parametrically on ρ2:

E1 [ρ1; ρ̄2, {RA}] = CF

Z
D1

ρ
5
3
1 (r) dr − Cx

Z
D1

ρ
4
3
1 (r) dr +

1

2

Z
D1

Z
D1

ρ1(r) ρ1(r
′)

‖r − r′‖
dr dr′ (55a)

+

Z
D1

Z
D2

ρ1(r) ρ̄2(r
′)

‖r − r′‖
dr′ dr −

MX
A=1

ZA

Z
D1

ρ1(r)

‖r − RA‖
dr

Note the introduction of the cross-domain interaction termZ
D1

Z
D2

ρ1(r) ρ̄2(r
′)

‖r − r′‖
dr′ dr ,

2. When solving the electronic structure problem in D2, the density ρ1 in the domain D1 is considered fixed;
in other words, the energy functional E2 associated with D2 depends parametrically on ρ1:

E2 [ρ2; ρ̄1, {RA}] = CF

Z
D2

ρ
5
3
2 (r) dr − Cx

Z
D2

ρ
4
3
2 (r) dr +

1

2

Z
D2

Z
D2

ρ2(r) ρ2(r
′)

‖r − r′‖
dr dr′ (55b)

+

Z
D2

Z
D1

ρ2(r) ρ̄1(r
′)

‖r − r′‖
dr′ dr −

MX
A=1

ZA

Z
D2

ρ1(r)

‖r − RA‖
dr

Note the introduction of the cross-domain interaction termZ
D2

Z
D1

ρ2(r) ρ̄1(r
′)

‖r − r′‖
dr′ dr .
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3. The charge conservation constraints assumes the formZ
D1

ρ1(r) dr +

Z
D2

ρ2(r) dr − Ne = 0 . (55c)

The electronic problems are solved independently in D1 and D2, the coupling coming through Eq.(55c). The
solution process starts with initial guesses for ρ1(r) and ρ2(r) and repeatedly solves the electronic problems in D1

and D2 until the change in ρ1(r) and ρ2(r) between successive iterations becomes negligible.
In this framework, the first order optimality conditions for the electronic problems in D1 and D2; i.e.,

δE1 [ρ1; ρ̄2, {RA}] = 0 (56a)

δE2 [ρ2; ρ̄1, {RA}] = 0 , (56b)

should hold for any set of changes in density δρ1(r) and δρ2(r) that satisfyZ
D1

δρ1(r) dr +

Z
D2

δρ1(r) dr = 0 . (56c)

For r ∈ D1, by suitably defining

F1 [ρ1(r); ρ̄2(r), {RA}] =
5

3
CF ρ

2
3
1 (r) −

4

3
Cxρ

1
3
1 (r) +

Z
D1

ρ1(r
′)

||r − r′||
dr′ +

Z
D2

ρ̄2(r
′)

||r − r′||
dr′ −

MX
A=1

ZA

||r − RA||
(57a)

and, for r ∈ D2, defining

F2 [ρ2(r); ρ̄1(r), {RA}] =
5

3
CF ρ

2
3
2 (r) −

4

3
Cxρ

1
3
2 (r) +

Z
D1

ρ̄1(r
′)

||r − r′||
dr′ +

Z
D2

ρ2(r
′)

||r − r′||
dr′ −

MX
A=1

ZA

||r − RA||
(57b)

the first-order optimality conditions becomeZ
D1

F1 [ρ1(r); ρ̄2(r), {RA}] δρ1(r) = 0 (58a)Z
D2

F2 [ρ2(r); ρ̄1(r), {RA}] δρ2(r) = 0 , (58b)

which must hold for any perturbations δρ1(r) and δρ2(r) that satisfy Eq.(56c). Then there should be a constant
µ such that ρ1(r), ρ2(r), and µ are the solution of the integral system

F1 [ρ1(r); ρ̄2(r), {RA}] + µ = 0 (59a)

F2 [ρ2(r); ρ̄1(r), {RA}] + µ = 0 (59b)Z
D1

ρ1(r)dr +

Z
D2

ρ2(r)dr − Ne = 0 . (59c)

In what follows, denote by ρ̃1(r) and ρ̃2(r) the solution of the above system, and define

ρ(r) =

�
ρ̃1(r)
ρ̃2(r)

r ∈ D1

r ∈ D2

For any r ∈ D, either r ∈ D1, or r ∈ D2. From Eq.(59a) in the first case, or Eq.(59b) in the second case, ρ̃(r)
must satisfy

5

3
CF ρ̃

2
3 (r) −

4

3
Cxρ̃

1
3 (r) +

Z
D

ρ̃(r′)

||r − r′||
dr′ −

MX
A=1

ZA

||r − RA||
+ µ = 0 (60a)Z

D

ρ̃(r)dr − Ne = 0 . (60b)

22



−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

5

10

15

20

25

30

35

40

location

Comparison of two Thomas Fermi implementations

Direct Simulation
Interpolation reconstruction

1 2 3 4 5 6 7 8 9 10 11
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

Index of the domain

Total charge in subdomains

Direct Simulation
Linear Reconstruction
Quadratic Reconstruction

Figure 5: Solutions and Total Charge resulting from direct minimization of the Thomas Fermi functional and from

the minimization of the Thomas Fermi functional with density reconstruction

This is, however, precisely the problem that provides the solution ρ(r) for the original problem, defined over the
whole domain D (see Eq.(54)). Therefore, ρ(r) = ρ̃(r) and λ = µ.

Conversely, suppose that ρ(r) and λ are such that the conditions of Eq.(54) hold for any r ∈ D. Define
ρ1(r) = ρ(r) for any r ∈ D1, and ρ2(r) = ρ(r) for any r ∈ D2; that is, define ρ1(r) and ρ2(r) to be the restrictions
of ρ(r) to D1 and D2, respectively. Writing Eq.(54a) for any r ∈ D1 indicates that Eq.(59a) holds, while writing
Eq.(54a) for r ∈ D2 suggests that Eq.(59b) holds. Since D = D1 ∪ D2, the charge conservation condition in
Eq.(54b) can be expressed as in Eq.(59c). In other words, the solution of the electronic problem in D provides
for the solution of the electronic problem in the subdomains.

To conclude, one can divide the large problem and solve smaller electronic problems on the subdomains, with
the caveat that the potential (the cross-domain interaction) should be appropriately defined as indicated earlier.
Conversely, the electronic density in the big domain provides for the solution of the electronic density problem in
each subdomain.

Finally, the assumption that D was partitioned in two subdomains D1 and D2 was introduced to keep the
presentation simple. The same argument holds if D is partitioned in more subdomains, and the electronic problem
is solved in each of these domains in parallel with appropriately defined cross-domain potentials..

B Numerical Results

In this section, we compare the numerical results from the direct minimization approach of the Thomas Fermi
functional with the ones from the procedure described in Subsection (3.2).

Out one-dimensional setup is very similar to the one in Figure (2). We take 11 equally spaced nuclei with
unit charge, ZA = 1, and we take the total number of electrons N to be equal to 11. The location of the atoms
coresponds to the peaks seen in Figure (5). We construct a mesh that has 50 nodes per cell, with 30 of them
equally spaced on an interval centered at the position of the atom and whose length is 1/5 of the distance between
two atoms. We therefore have 11 domains, D1, D2, . . ., D11. For discretization of the integral operators we use the
trapezoidal rule. When doing interpolation, we use only the domains D2, D6,D10 in order to avoid the boundary
distortion. We use either piecewise linear or quadratic interpolations for the interpolation-based approach. We
chose the parameter δ = 10−4, with a slightly different regularization than described in the previous sections
whereby terms of the type 1/|| · || are replaced with 1/|| · +δ||.

We solve the resulting electronic structure optimization problem with the augmented Lagrangian software
Lancelot [6], which uses an iterative method to solve the bound constrained subproblem, that is obtained after
penalization of the constraints. When using the interpolation method, we enforce the interpolation conditions
(26) as constraints, rather than substituting them in the functional that describes the problem (43). In an actual
large scale implementation, the substitution would be carried out, and only the electronic density degrees of
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freedom in D1, D2,D6,D10,D11 will be considered. In this work, we are seeking to evaluate the potential of
interpolation-based reconstruction without regard to computational efficiency, at the moment.

The solution of the direct numerical simulation and of the linear-interpolation-based optimization are depicted
in Figure 5. We can see that they are indistinguishable, which means that the interpolation approach was highly
succesfull at reconstructing the solution in the “gap” domains. The same is true for the quadratic-interpolation-
based reconstruction which is not depicted since the ticker overlap would reduce the quality of the figure. Note,
however, that the solutions are not identical. This can be seen by computing the total charge in the subdomains.
The results for the three methods are presented in Figure 5, the right panel. We see that the quadratic interpolation
method produced a very good fit, with a relative error that is uniformly bellow 2% for domains 2 to 10. Note that
a periodic approach (which is equivalent to requesting that all domains from D2 to D10 have the same density
must result in an error of the total charge that must exceed 4% for some subdomains.

The solution presents some irregular artifacts at the very end of the domain. That in itself is not that
surprising, given that the Thomas-Fermi theory is asymptotically valid in the bulk. We want to stress that we do
not investigate here how good of a prediction a DFT such as Thomas Fermi can make; rather we are investigating
the potential of density reconstruction methods to reduce computational effort while retaining high accuracy and
moving beyond periodic boundary conditions, which, from our computations and theoretical developments, seems
to be very high.

In future work, we will investigate the extension of these conclusions to other DFT approaches.
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